Detecting Environmental Change Using Self-Organizing Map Techniques Applied to the ERA-40 Database
نویسندگان
چکیده
Data mining is a valuable tool in meteorological applications. Properly selected data mining techniques enable researchers to process and analyze massive amounts of data collected by satellites and other instruments. Large spatial-temporal datasets can be analyzed using different linear and nonlinear methods. The Self-Organizing Map (SOM) is a promising tool for clustering and visualizing high dimensional data and mapping spatial-temporal datasets describing nonlinear phenomena. We present results of the application of the SOM technique in regions of interest within the European re-analysis data set. The possibility of detecting climate change signals through the visualization capability of SOM tools is examined.
منابع مشابه
A Modfied Self-organizing Map Neural Network to Recognize Multi-font Printed Persian Numerals (RESEARCH NOTE)
This paper proposes a new method to distinguish the printed digits, regardless of font and size, using neural networks.Unlike our proposed method, existing neural network based techniques are only able to recognize the trained fonts. These methods need a large database containing digits in various fonts. New fonts are often introduced to the public, which may not be truly recognized by the Opti...
متن کاملSteel Consumption Forecasting Using Nonlinear Pattern Recognition Model Based on Self-Organizing Maps
Steel consumption is a critical factor affecting pricing decisions and a key element to achieve sustainable industrial development. Forecasting future trends of steel consumption based on analysis of nonlinear patterns using artificial intelligence (AI) techniques is the main purpose of this paper. Because there are several features affecting target variable which make the analysis of relations...
متن کاملSelf-organizing systems for knowledge discovery in large databases
We present a framework in which self-organizing systems can be used to perform change of representation on knowledge discovery problems, to learn from very large databases. Clustering using self-organizing maps is applied to produce multiple, intermediate training targets that are used to define a new supervised learning and mixture estimation problem. The input data is partitioned using a stat...
متن کاملHolistic Farsi handwritten word recognition using gradient features
In this paper we address the issue of recognizing Farsi handwritten words. Two types of gradient features are extracted from a sliding vertical stripe which sweeps across a word image. These are directional and intensity gradient features. The feature vector extracted from each stripe is then coded using the Self Organizing Map (SOM). In this method each word is modeled using the discrete Hidde...
متن کاملSelf-organizing Map Application for Retrieval of Man-made Structures in Remote Sensing Data
Self-Organizing Maps (SOMs) have been successfully applied to content-based image retrieval (CBIR). In this study, we investigate the potential of PicSOM, an image database browsing system, applied to remote sensing images. Databases of small images were artificially created, either from a single satellite image for object detection, or two satellite images when considering change detection. By...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Data Science Journal
دوره 10 شماره
صفحات -
تاریخ انتشار 2011